Prevalência e características de SAOS Posicional, um estudo retrospetivo

Artigo Original

Autores

Ricardo São Pedro

Hospital Garcia de Orta, Portugal

Filipa Ferreira

Hospital Garcia de Orta, Portugal

Cláudia Santos

Hospital Garcia de Orta, Portugal

Henrique Teixeira

Hospital Garcia de Orta, Portugal

Helena Rosa

Hospital Garcia de Orta, Portugal

Mário Santos

Hospital Garcia de Orta, Portugal

Luís Antunes

Hospital Garcia de Orta, Portugal

Correspondência:

Ricardo São Pedro Ricardo.sp2018@gmail.com

Artigo recebido a 19 de Junho 2022. Aceite para publicação a 18 de Outubro de 2022.

Resumo

Objetivos: Comparar a prevalência de SAOS Posicional (SAOS-P) com base em diferentes definições e identificar os principais fatores independentemente associados com SAOS-P e SAOS-P exclusiva (SAOS-Pe). Desenho do Estudo: Estudo retrospetivo. Material e Métodos: Análise do registo de polissonografia (PSG) tipo 3 de doentes adultos realizadas entre 2020 e 2021 no Serviço de Otorrinolaringologia do Hospital Garcia de Orta. Definiu-se SAOS-P pelos critérios de APOC e a SAOS-Pe foi definida como APOC I. Resultados: Foram avaliadas 245 PSG, onde se verificou uma idade média de 57 anos e 64,9% de doentes do género masculino. A prevalência de SAOS-P foi de 55,5%, 38% dos quais apresentava SAOS-Pe. Os doentes com SAOS-P eram mais novos (OR=0,971), dormiram maioritariamente em posição supina (OR=1,031), tinham menor Índice de Massa Corporal (IMC) (OR=0,882), Índice de Apneia/Hipopneia (IAH), índice de dessaturação de oxigénio (OR=0,964), média da queda de dessaturação, e menor tempo de roncopatia (p<0,05). Os fatores preditores de SAOS-Pe mais significativos foram um menor índice de dessaturação de oxigénio (OR=0,879) e maior tempo em posição supina (OR=1,031). Conclusões: Os doentes com SAOS-P e SAOS-Pe são mais novos, menos obesos e apresentam quadros menos graves, sendo respetivamente candidatos a melhoria ou resolução da sua doença com recurso a posicionadores.

Palavras-chave: Síndrome de Apneia Obstrutiva do Sono; SAOS; Posicional;

Introdução

A Síndrome de Apneia Obstrutiva do Sono Posicional (SAOS-P) é um subtipo de SAOS que engloba os doentes cujo as apneias e hipopneias tendem a ocorrer com maior frequência em certas posições do sono, principalmente na posição supina¹. Desde 1984 que têm surgido diversas definições de SAOS-P, embora nenhuma seja amplamente aceite na comunidade científica. O primeiro autor a caracterizar mais extensivamente a

SAOS-P foi Cartwright, que a definiu como os doentes com SAOS que tinham pelo menos o dobro do Índice de Apneia/Hipopneia (IAH) em posição supina relativamente à posição não supina². Embora seja uma das primeiras definições, esta continua a ser uma das mais utilizadas em diversos centros. Mais recentemente, Levendowski et al, introduziu a definição de SAOS-P como um IAH pelo menos 1,5 vezes o IAH em posição não supina³, e em 2015, Frank et al, numa tentativa de melhor identificar os candidatos a terapêutica com posicionadores, desenvolveu a classificação Amsterdan Positional OSA Classification (APOC), que implica diagnóstico de SAOS pelos critérios da American Academy of Sleep Medicine (AASM) e pelo menos 10% do tempo na melhor e pior posição de sono, dividindo-se depois em 3 categorias: APOC I quando o IAH na melhor posição de sono é inferior a 5; APOC Il quando o IAH na melhor posição de sono é de menor gravidade que na pior posição de sono e APOC III quando o IAH é de pelo menos 40 e há uma redução de pelo menos 25% na melhor posição de sono^{4,5}.

A prevalência de SAOS-P é estimada entre 53 e 77,4% dos doentes com SAOS sendo esta variabilidade justificada pelo desenho dos estudos, etnicidade dos doentes e utilização de diferentes definições de SAOS-P. doentes com SAOS-P apresentam predominantemente SAOS ligeiro a moderado e são maioritariamente homens mais jovens, com menor IMC, com menos sintomas, menos comorbilidades, menor perímetro cervical e abdominal e menor pontuação nos questionários de Berlim, STOP-BANG e Escala de Sonolência de Epworth em relação aos doentes com SAOS não posicional^{1,6}. Os principais mecanismos associados com a SAOS-P são provavelmente uma combinação geometria da via aérea superior inadequada, com aumento da probabilidade de colapso, volume pulmonar reduzido e falha na compensação gerada pelos músculos dilatadores da via aérea⁷.

Embora a terapêutica com CPAP (pressão positiva contínua da via aérea) continue a ser o

gold standard do tratamento da SAOS, a taxa de aderência à mesma continua relativamente baixa por parte dos doentes⁸. Nesse sentido, a identificação de doentes com SAOS-P assume uma importância clínica decisiva uma vez que estes podem beneficiar de terapêutica com a nova geração de posicionadores⁹.

O presente estudo teve como objetivo comparar sistematicamente a prevalência de SAOS-P em doentes adultos diagnosticados com SAOS com base em diferentes definições e identificar os principais fatores independentemente associados com SAOS-P e SAOS-P exclusiva (SAOS-Pe).

Material e Métodos

Estudo retrospetivo com análise do registo das PSG tipo 3 realizadas entre janeiro de 2020 e dezembro 2021 no Serviço de Otorrinolaringologia do Hospital Garcia de Orta – Centro de Responsabilidade Integrada. Foram incluídos os registos de PSG de doentes com idade igual ou superior a 18 anos, tempo total do registo superior 4 horas e IAH maior ou igual a 5. Os doentes com registo de sinal de fluxo nasal inferior a 85% do tempo total ou com falhas no sensor de posição foram excluídos.

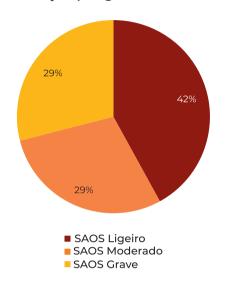
Foi utilizado um aparelho NOX T3® em todos as PSG, com 6 canais: sensor de fluxo nasal, oximetria de pulso, bandas torácicas e abdominais, sensor de posição e microfone. Os traçados obtidos foram automaticamente analisados recorrendo ao software Noxturnal da Nox Medical® e revistos manualmente segundo os critérios da AASM de 201810. As apneias foram definidas como uma diminuição de pelo menos 90% no sensor de fluxo nasal e as hipopneias como uma diminuição de pelo menos 30% no sensor de fluxo nasal associado a dessaturação de oxigénio de pelo menos 3%, ambos com duração igual ou superior a 10 segundos.

Foram analisadas as variáveis: idade, género, IMC, tempo em posição supina e em posição não supina, IAH, IAH em posição supina e não supina, índice de dessaturação de oxigénio (IDO), IDO em posição supina e não supina,

média da queda de dessaturação (MQD) total, em posição supina e não supina, roncopatia, roncopatia em posição supina e não supina. A SAOS-P foi caracterizada utilizando os critérios de APOC e a SAOS-Pe foi definida como APOC I, uma vez que nos critérios de Cartwright a ausência de indicação de tempo mínimo nas várias posições de sono pode facilmente gerar falsos positivos, ou seja, doentes que dormem mais de 90% da noite em posição supina, com IAH acima de 5 eventos/h, e que no restante tempo, por ser muito diminuto, numa posição não supina, apresentem um IAH muito reduzido, preenchendo sem dificuldade o critério do dobro de IAH em posição supina relativamente à posição não supina.

Os dados quantitativos foram descritos através da mediana e intervalo interquartil, e os dados categóricos, por frequências e percentagens. A análise estatística foi efetuada com recurso ao software SPSS® (Statistical Package for the Social Sciences -IBM Corp. Released 2017, IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.) para Microsoft Windows®. Recorreu-se ao teste de Mann-Whitney U e ao teste de Chiquadrado. Foi ainda realizada uma regressão logística binominal para determinar os fatores preditivos mais significantes da dependência posicional. Um valor de p≤0.05 foi considerado estatisticamente significativo.

Resultados


Dos 372 doentes que realizaram PSG tipo 3 entre 2020 e 2021, foram incluídos no estudo 245, sendo os restantes 127 excluídos após aplicação dos critérios de exclusão. Verificouse uma idade média de 57(±20) anos e 159 doentes (64,9%), eram do género masculino. A maioria apresentava excesso de peso ou obesidade (mediana IMC 29,4±6,3kg/m2) e, como demonstrado pelo Gráfico 1, foram maioritariamente classificados como SAOS ligeiro (mediana de IAH de 17,8 eventos/h ± 21,3, com uma variação entre 5,1 e 110,8).

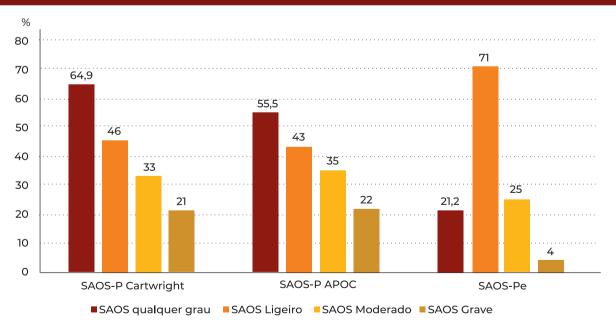
A mediana de IDO foi de 19 ± 21,5 eventos/h e a mediana da MQD foi de 4,6% ± 1,6. Quando ajustado à posição do doente, o IAH, IDO e a

Gráfico 1

Distribuição da amostra por gravidade de SAOS segundo critérios AASM 2018

Distribuição por gravidade de SAOS

MQD foram mais elevados na posição supina (Tabela 1), apesar da mediana do tempo em posição supina ser menor (65,8% ± 37,3).


Quanto à roncopatia, verificou-se a sua presença em 14,3% ± 29 do tempo dos exames e sobretudo na posição não supina (13,7% ± 35). A Tabela 1 resume a caracterização da amostra. Dos 245 doentes incluídos, 136 (55,5%) foram classificados como SAOS-P de acordo com os critérios de APOC e 52 (21,2%) foram classificados como SAOS-Pe, o que representa 38% da SAOS-P pelos critérios de APOC. A prevalência de SAOS-P e SAOS-Pe de acordo com o grau de SAOS é demonstrada no Gráfico 2. A prevalência de SAOS-P diminui de 43% na SAOS ligeira para 22% na SAOS grave, enquanto a prevalência de SAOS-Pe diminui de 71% na SAOS ligeira para 4% na SAOS grave. Quando comparados com doentes com SAOS não posicional (SAOS-NP), os doentes com SAOS-P apresentam menor IMC, dormem menos tempo na posição não supina, e têm IAH, IDO e tempo de roncopatia menores. Por outro lado, apresentam maior MQD em posição supina e dormem mais tempo em posição supina (Tabela 2).

Quando comparados com doentes com SAOS não posicional exclusiva (SAOS-NPe),

Tobelo 1Dados demográficos e do sono (mediana) da amostra.

	Mediana (AIQ)	Min-max
Homens (n(%))	159 (64,9%)	-
Idade (anos)	57 ± 20	20-91
IMC (kg/m2)	29.4 ± 6,3	20.5 – 58.7
Tempo supino (%)	34.2 ± 37.5	0.2 – 100
Tempo não supino (%)	65.8 ± 37.3	0 – 99.7
IAH	17.8 ± 21.3	5.1 – 110.8
IAH supino	30.9 ± 36.2	0 – 122.4
IAH não supino	9.9 ± 16	0 – 109.5
IDO	19 ± 21.5	5 – 129.3
IDO supino	31.2 ± 33.7	0 – 126.1
IDO não supino	12.4 ± 19.6	0 – 129.7
Média queda dessaturação (%)	4.6 ± 1.6	3.2 – 18.7
Média queda dessaturação supino (%)	4.2 ± 2.2	0 – 17.1
Média queda dessaturação não supino (%)	3.9 ± 1.1	0 – 19.9
Roncopatia (%)	14.3 ± 29	0 – 74.7
Roncopatia supino (%)	8.7 ± 22.8	0 – 74.9
Roncopatia não supino (%)	13.7 ± 35	0 – 82.6

Gráfico 2Prevalência de SAOS-P (definição de Cartwright e APOC) e de SAOS-Pe total e de acordo com a gravidade de SAOS.

os doentes com SAOS-Pe apresentam idades inferiores, menor IMC, dormem mais tempo na posição supina, e têm IAH, IDO, MQD e

tempo de roncopatia menores (Tabela 3). O modelo de regressão logística binominal demonstrou que os fatores preditores com

Tobelo 2Características dos doentes com SAOS-P em comparação com os SAOS-NP

	SAOS-P (Cartwright)	SAOS-NP	Valor P	SAOS-P (APOC)	SAOS-NP	Valor P
N	159	86		136	109	
Homens (n(%))	110 (69.2%)	49 (57%)	0.056	91 (66.9%)	68 (62.4%)	0.056
Idade (anos)	55 ± 21	60 ± 18	0.011	56 ± 20	58 ± 20	0.559
IMC (kg/m2)	28.4 ± 5.3	32.4 ± 8.4	<0.001	28.15 ± 5.8	31 ± 7.3	<0.001
Tempo supino (%)	39.7 ± 37.4	27.85 ± 39.5	0.12	42.7 ± 30.2	21.6 ± 44.9	<0.001
Tempo não supino (%)	60.3 ± 37.4	72.15 ± 39.5	0.011	57.3 ± 30.2	77.2 ± 44.8	<0.001
IAH	15.9 ± 15.1	24.25 ± 41.1	0.001	16.85 ± 14.3	20.2 ± 37.4	0.026
IAH supino	32.2 ± 32	20.1 ± 39.7	0.001	31.2 ± 23.6	30 ± 53	0.575
IAH não supino	7.1 ± 9	25 ± 31.7	<0.001	7.1 ± 9.2	17.5 ± 31	<0.001
IDO	16.6 ± 15.8	26.05 ± 39.2	<0.001	17.35 ± 14.4	24.4 ± 37.3	0.001
IDO supino	32.3 ± 30.5	26.55 ± 40.8	0.084	31.05 ± 24.4	31.2 ± 51.6	0.753
IDO não supino	9 ± 10.4	26.45 ± 36.1	<0.001	9.3 ± 10.1	21.2 ± 31.9	<0.001
Média queda dessaturação (%)	4.6 ± 1.4	4.6 ± 1.6	0.02	4.6 ± 1.6	4.6 ± 2	0.415
Média queda dessaturação supino (%)	4.6 ± 2	4.2 ± 2.2	0.028	4.75 ± 1.7	4.2 ± 3	0.017
Média queda dessaturação não supino (%)	3.7 ± 0.8	3.9 ± 1.1	<0.001	3.8 ± 0.9	4.3 ± 1.4	<0.001
Roncopatia (%)	14.3 ± 31.1	14.4 ± 27	0.919	12.55 ± 24.4	18 ± 34.2	0.037
Roncopatia supino (%)	9.2 ± 21.9	6.75 ± 23.3	0.052	11.25 ± 23.6	5.4 ± 19.4	0.001
Roncopatia não supino (%)	11.5 ± 35.5	16.4 ± 33.9	0.128	8.2 ± 26	17.9 ± 39.7	0.002

significância estatística foram o IMC (β=-0,073, p=0,02), tempo em posição supina (β=0,022, p=0,001) e IDO (β=-0,037, p<0,001) para SAOS-P (Tabela 4). Este modelo de regressão logística binominal (incluindo IMC, tempo em posição supina e IDO) classificou 71% dos doentes corretamente. A sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo foram de 83,1%, 56%, 70,2% e 72,6%, respetivamente. Relativamente à SAOS-Pe, os fatores preditores mais significantes foram o tempo em posição supina (β=0,031, p<0,001) e o IDO (β =-0,129, p<0,001) (Tabela 4). Este modelo de regressão logística binominal (incluindo o tempo em posição supina e o IDO) classificou 80,8% dos doentes corretamente. A sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo foram de 32,7%, 93,8%, 58,6% e 83,8%, respetivamente.

Discussão

A SAOS-P como subtipo de SAOS tem vindo a ganhar importância na comunidade científica nas últimas décadas, sobretudo pelo desenvolvimento tecnológico dos posicionadores. A crescente onda de publicações sobre o tema bem como a procura de critérios de SAOS-P com melhor capacidade de selecionar os candidatos à terapêutica com posicionadores, atestam este facto.

A prevalência de SAOS-P em doentes com diagnóstico de SAOS no nosso estudo foi de 55,5% e de 21,2% para SAOS-Pe. Estes dados de prevalência estão de acordo com o descrito na literatura revista. Em 2016, Lee et al. numa série de 1052 adultos coreanos demonstraram uma prevalência de 75,6% de SAOS-P com critérios de Cartwright e 39,9% de SAOS-Pe,

Tabela 3Características dos doentes com SAOS-Pe em comparação com os SAOS-NPe

	SAOS-Pe (APOC I)	SAOS-NPe	Valor P
N	52	193	
Homens (n(%))	35 (67.3%)	124 (64.2%)	0.682
Idade (anos)	53 ± 24	58 ± 29	0.014
IMC (kg/m2)	27.65 ± 5	30.4 ± 6.2	0.002
Tempo supino (%)	46.05 ± 25.7	28 ± 40.6	<0.001
Tempo não supino (%)	53.9 ± 25.7	72 ± 40.3	<0.001
IAH	10.9 ± 9.7	21.1 ± 25	<0.001
IAH supino	23.4 ± 19.5	34.4 ± 39.9	<0.001
IAH não supino	2.5 ± 2.5	13 ± 19.3	<0.001
IDO	11.45 ± 7.2	23.2 ± 26.9	<0.001
IDO supino	22.65 ± 17.8	36.1 ± 36.8	<0.001
IDO não supino	3.4 ± 3	15.8 ± 20.8	<0.001
Média queda dessaturação (%)	4.1 ± 1	4.7 ± 2	<0.001
Média queda dessaturação supino (%)	4.25 ± 1.1	4.6 ± 2.5	0.149
Média queda dessaturação não supino (%)	3.4 ± 0.6	4.1 ± 1.3	<0.001
Roncopatia (%)	8.2 ± 21.9	16.7 ± 32.6	0.003
Roncopatia supino (%)	12.2 ± 29.2	8.1 ± 20.5	0.071
Roncopatia não supino (%)	2.75 ± 14.9	17.9 ± 38	<0.001

Tobelo 4Regressão logística binominal com os fatores preditivos mais significativos para SAOS-P ou SAOS-Pe

	Parâmetros	β	SE	Wald	Df	OR (95% IC)	Valor P
SAOS-P critérios Cartwright	Idade (anos)	-0.029	0.012	5.608	1	0.971 (0.948 – 0.995)	0.018
	IMC (kg/m2)	-0.125	0.035	12.862	1	0.882 (0.824 – 0.945)	<0.001
	IDO (eventos/h)	-0.031	0.009	11.667	1	0.969 (0.952 – 0.987)	0.001
	Tempo em posição supina (%)	0.014	0.007	4.343	1	1.014 (1.001 – 1.027)	0.037
SAOS-P critérios APOC	IMC (kg/m2)	-0.073	0.031	5.397	1	0.930 (0.874 – 0.989)	0.02
	Tempo em posição supina (%)	0.022	0.006	11.914	1	1.022 (1.009 – 1.035)	0.001
	IDO (eventos/h)	-0.037	0.009	16.094	1	0.964 (0.946 – 0.981)	0.007
SAOS-Pe	IDO (eventos/h)	-0.129	0.026	24.636	1	0.879 (0.835 – 0.925)	<0.001
	Tempo em posição supina (%)	0.031	0.008	16.380	1	1.031 (1.016 – 1.047)	<0.001

que foi definido como subtipo I, com IAH em posição não supina inferior a 5 eventos/ h¹¹. A prevalência ligeiramente acima do que encontramos no nosso estudo, sobretudo em relação à SAOS-Pe pode estar relacionada com

as características fisionómicas na população asiática, nomeadamente base do crânio curta e retrognatia.

Já em 2018, Levendowski *et al.* descreveram uma prevalência de 64,8% e 50,7% de

SAOS-P numa amostra de 142 doentes, utilizando critérios de Cartwright e APOC respetivamente⁹, e mais recentemente, num dos maiores estudos sobre características e prevalência de SAOS-P e SAOS-Pe, numa serie de 6437 doentes da população francesa, Sabil A. *et al.* verificaram uma prevalência de 53,5% e 20,1% respetivamente⁷.

A gravidade inferior da SAOS nos doentes considerados SAOS-P ou SAOS-Pe é transmitida pela percentagem de SAOS grave nos doentes SAOS-P (22%), e nos SAOS-Pe (4%). Estes dados estão de acordo com o observado em estudos anteriores⁹.

semelhança de outros estudos^{7,8,9} observámos que o grupo de doentes classificados como SAOS-P dormiram mais tempo em posição supina, e tinham menor idade, IMC, IDO e IAH. Contudo, utilizando um modelo de regressão logística binominal, observámos que os fatores preditores mais significativos de SAOS-P foram o IMC, IDO e o tempo de posição supina. Assim, quando o IMC e IDO aumentam, a probabilidade de o doente apresentar SAOS-P diminui. Pelo contrário, quando o tempo em posição supina aumenta, a probabilidade de o doente apresentar SAOS-P aumenta também.

Já relativamente à SAOS-Pe, observámos que o grupo classificado como SAOS-Pe dormiu mais tempo em posição supina, e que apresentou idade, IMC, IAH, IDO, MQD e tempo de roncopatia menores, o que atesta a menor gravidade destes casos. Aplicando o mesmo princípio que para a SAOS-P, utilizando um modelo de regressão logística binominal, observámos que os fatores preditores mais significativos de SAOS-Pe foram o IDO e o tempo em posição supina. Deste modo, quando o IDO aumenta, a probabilidade de ser SAOS-Pe diminui e pelo contrário, quando o tempo em posição supina aumenta, a probabilidade de ser SAOS-Pe aumenta também.

Ao contrário de alguma da literatura consultada, a predominância de doente do género masculino no grupo de SAOS-P ou SAOS-Pe não foi estatisticamente significativa

no nosso estudo¹². Na visão dos autores esta diferença poderá estar relacionada com a predominância à partida de doentes de género masculino na amostra.

Uma das limitações deste estudo poderá ser a utilização de PSG tipo III em ambulatório ao invés de PSG tipo I em laboratório de sono, uma vez que apenas com o segundo se consegue verificar as fases de sono do doente, e por outro lado, o feedback de vídeo permite também a correção da posição do equipamento no doente. Outra limitação que reconhecemos foi a realização de PSG em apenas uma noite por doente, o que não acautela a variabilidade intraindividual dos doentes com SAOS¹³.

Destacamos ainda o facto de, no conhecimento dos autores, se tratar do primeiro estudo do género numa amostra da população portuguesa.

Conclusão

Da análise dos nossos resultados podemos concluir que a SAOS-P é relativamente frequente na população de doentes com SAOS. Os doentes com SAOS-P tendem a ser mais novos, menos obesos e apresentam quadros menos graves comparativamente aos doentes com SAOS-NP. A identificação de doentes com SAOS-P e SAOS-Pe, que correspondem a cerca de 1/3 dos anteriores, apresenta-se de importância decisiva dado o potencial de melhoria ou resolução da sua doença com recurso a posicionadores.

Conflito de Interesses

Os autores declaram que não têm qualquer conflito de interesse relativo a este artigo.

Confidencialidade dos dados

Os autores declaram que seguiram os protocolos do seu trabalho na publicação dos dados de pacientes.

Proteção de pessoas e animais

Os autores declaram que os procedimentos seguidos estão de acordo com os regulamentos estabelecidos pelos diretores da Comissão para Investigação Clínica e Ética e de acordo

com a Declaração de Helsínguia da Associação Médica Mundial.

Financiamento

Este trabalho não recebeu qualquer contribuição, financiamento ou bolsa de estudos.

Disponibilidade dos Dados científicos

Não existem conjuntos de dados disponíveis publicamente relacionados com este trabalho.

Referências bibliográficas

1. Yingjuan M, Siang WH, Leong Alvin TK, Poh HP. Positional therapy for positional obstructive sleep apnea. Sleep Med Clin. 2020 Jun;15(2):261-275. doi: 10.1016/j.jsmc.2020.02.012. 2.Cartwright RD. Effect of sleep position on sleep apnea severity. Sleep. 1984;7(2):110-4. doi: 10.1093/sleep/7.2.110. 3. Levendowski DJ, Seagraves S, Popovic D, Westbrook PR. Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea. J Clin Sleep Med. 2014 Aug 15;10(8):863-71. doi: 10.5664/jcsm.3956.

4.Frank MH, Ravesloot MJ, van Maanen JP, Verhagen E, de Lange J, de Vries N. Positional OSA part 1: Towards a clinical classification system for position-dependent obstructive sleep apnoea. Sleep Breath. 2015 May;19(2):473-80. doi: 10.1007/s11325-014-1022-9.

5.Ravesloot MJ, Frank MH, van Maanen JP, Verhagen EA, de Lange J. de Vries N. Positional OSA part 2: retrospective cohort analysis with a new classification system (APOC). Sleep Breath. 2016 May;20(2):881-8. doi: 10.1007/s11325-015-1206-y.

6.Oulhaj A, Al Dhaheri S, Su BB, Al-Hougani M. Discriminating between positional and non-positional obstructive sleep apnea using some clinical characteristics. Sleep Breath. 2017 Dec;21(4):877-884. doi: 10.1007/s11325-017-1499-0.

7.Sabil A, Blanchard M, Annweiler C, Bailly S, Goupil F, Pigeanne T. et al. Positional obstructive sleep apnea within a large multicenter French cohort: prevalence, characteristics, and treatment outcomes. J Clin Sleep Med. 2020 Dec 15;16(12):2037-2046. doi: 10.5664/jcsm.8752. 8.Oksenberg A, Gadoth N, Toyras J, Leppanen T. Prevalence and characteristics of positional obstructive sleep apnea (POSA) in patients with severe OSA. Sleep Breath. 2020 Jun;24(2):551-559. doi: 10.1007/s11325-019-01897-1.

9.Levendowski DJ, Oksenberg A, Vicini C, Penzel T, Levi M, Westbrook PR. A systematic comparison of factors that could impact treatment recommendations for patients with Positional Obstructive Sleep Apnea (POSA). Sleep Med. 2018 Oct;50:145-151. doi: 10.1016/j.sleep.2018.05.012.

10.Berry RN, Albertaria CL, Harding SM, Lloyde RM, et al. The AASM Manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Version 2.5. American Academy of Sleep Medicine. 2018. http://www.aasm.org.

11.Lee SA, Paek JH, Chung YS, Kim WS. Clinical features in patients with positional obstructive sleep apnea according to its subtypes. Sleep Breath. 2017 Mar;21(1):109117. doi: 10.1007/s11325-016-1379-z.

12. Bignold JJ, Mercer JD, Antic NA, McEvoy RD, Catcheside PG. Accurate position monitoring and improved supinedependent obstructive sleep apnea with a new position recording and supine avoidance device. J Clin Sleep Med. 2011 Aug 15;7(4):376-83. doi: 10.5664/JCSM.1194

13. Fietze I, Glos M, Zimmermann S, Penzel T. Long-term variability of the apnea-hypopnea index in a patient with mild to moderate obstructive sleep apnea. J Clin Sleep Med. 2020 Feb 15;16(2):319-323. doi: 10.5664/jcsm.8192.